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We discuss  s o m e  proper t ies  o f  the  one -d imens iona l  F o k k e r - P l a n c k  
equa t ion ,  and  in par t icu la r  the  t ime requi red  to go t h r o u g h  a potent ia l  
barr ier  o f  a rb i t ra ry  size and  shape .  W e  apply  the  resul t ing  fo rmu la s  to the  
mel t ing  o f  helical po lymers  m a d e  o f  two types o f  m o n o m e r s  (A and  B) 
with different mel t ing  t empera tu re s :  W e  cons ider  a restr icted p r o b l e m  in 
irreversible mel t ing,  where  one  single b o u n d a r y  ( separa t ing  a coil region 
f rom a helical region)  moves  t h r o u g h  the chemical  sequence.  In  a c rude  
a p p r o x i m a t i o n  the  d i s t r ibu t ion  func t ion  for the  b o u n d a r y  poin t  is t hen  
ruled by a s imple  F o k k e r - P l a n c k  equa t ion .  W h e n  the t empe ra tu r e  T is 
equal  to or  h igher  t h a n  the  average  mel t ing  poin t  T, the  b o u n d a r y  t ends  to 
m o v e  over mac roscop ic  dis tances,  t hus  ex tend ing  the  size o f  the  coil 
regions.  In  an  interval  T < T < T* the  p rogress ion  is predicted to be 
slow ( logari thmic) .  At  h igher  t empera tu re  T > T* essential ly all barr iers  
are  ove rcome  and  the  progress ion  is fast .  
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1. I N T R O D U C T I O N  

The transition from helix to coil of homogeneous polymer chains is reasonably 
well understood, at least as far as the static properties are concerned. 2 But 
if we go to a heteropolymer, with two constituents A and B that have different 
intrinsic melting temperatures T ,  and TB (ira > TB), we find a much more 
complex situation. 

(a) The equilibrium melting curve cannot be calculated in closed form 
(and heavy numerical calculations are required) when the chemical sequence 
of A and B monomers is not periodic (2,a~ although information from the 
wings of the curve can be helpful even for very long DNAs. ~4~ 

(b) The situation for kinetics is even worse. In fact, even for homo- 
polypeptides, the standard kinetic description, based on a time-dependent 
Ising model, (5~ is often not satisfactory; for instance, the elimination (upon 
cooling) of a small coil region C between two helical portions /-/1 and //2 
can take place only if the rod parts //1 a n d / / 2  are collinear and suitably 
positioned. Requirements of this sort are not properly included in the Ising 
picture. In this paper, we try to separate some effects of chemical hetero- 
geneity on the kinetics; for instance, an A-rich region that does not melt 
easily may act as a barrier opposing the spread of a coil region. 

In one favorable case these barrier effects become more tractable (and 
also the time-dependent Ising model is not too defective): Namely if we have 
only one coil portion, starting at one free end of the molecule, and growing 
at the expense of a long helix (Fig. 1). A similar problem was discussed 
previously for homopolypeptides. (6~ The assumption of a single coil portion 
is a severe restriction: In many cases, when the temperature T is raised, 

2 For an introduction to helix-coil transitions see Ref. 1. 

S 
coil  he l ix  

Fig. 1. At increasing temperatures a single-strand helical polymer is partially molten; 
the only conformations allowed for in the present paper correspond to a single coil 
region (from 0 to n). 
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nucleation of coils may occur separately at many points along the chemical 
sequence. However, (a) nucleation from the ends is favored, and (b) elastic 
forces tend to suppress nucleation inside one rigid rod, as explained in Ref. 
6. Thus the assumption may hold, at least for times not too long. 

Reference 6 was mainly concerned with a slowing down of the helix --+ 
coil reaction due to hydrodynamic friction on the coil portion. In the present 
study, where activation energies are dominant, these hydrodynamic effects 
enter only into some unessential prefactors and will be completely omitted. 
The motion of the boundary point (labeled by an index n, giving its position 
along the chemical sequence) will be described by a simple Fokker-Planck 
equation, including the effects of both random jumps and energy barriers. 
For the rather strongly cooperative transitions of interest, it will be appro- 
priate to treat the index n as continuous. Let us then callf(n, t) the distribu- 
tion function of the boundary point. It obeys an equation of the form 

where J is the current 

Of(nt) ~J 
~----U + ~ = o (1) 

containing (a) a diffusion term-D Of/On and (b) a flow term - D f ? U / ~ n ,  
describing the drift in a potential gradient: UT is the free energy required to 
transform the region (0, n) from helix to coil: 

UT = ~ [Fc(m) - Fh(m)] = dm [Fc - Fh] (3) 
m = l  

Here F~(m) and Fh(m) are the free energies of monomer m in the coil and in 
the helical state. In terms of the parameter S usually introduced for this 
type of transition (1~ we can write 

(1/T)[Fc(m) -- F~(m)] = In Sm (4) 

The m dependence of Sm describes the fact that, in heteropolymers, successive 
units do not have the same thermodynamic parameters. 

Equation (3) contains an important hidden assumption, namely that 
the free energy due to the boundary region itself (Er) is independent of the 
nature of the surrounding base pairs. Again returning to the usual notation, (1~ 
this means that, in our model, the cooperativity parameter 

= e x p ( - 2 E A T  ) (5) 

is kept independent of n. In reality, as pointed out by Reiss, (12) some modula- 
tion of e must occur. However, for n large, we expect the fluctuations of  U to 
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increase 3 and to dominate over the fluctuations of  (r, which remain b o u n d e d - -  
thus justifying our assumption. We associate with each monomer  site m an 
index/~m giving the type of monomer:  

{ 2  t y p e A  
b~r~ = 1 type B (6) 

and write 

In S m =  --q) + A l ~  

@ = C ( T - -  T),  T = � 8 9  + TB); A = � 8 9  T~) (7) 

Assuming TA -- TB << T and e << 1 (strong cooperativity), we can treat the 
factor C as temperature independent for all T of  interest, and express it in 
terms of the reaction enthalpy H, (4) 

C ~ H / T  2 (8) 

Both qb and A will be taken much smaller than unity. 4 A is independent of  
T, and (1) increases with T. In terms of qb and A we may write the reduced 
potential energy U(n) for the boundary point in the compact  form 

U ( YI ) : - -  l'l lJs ) -t- ~ t.r ~ - -  n 02) -~- A I ~ l~ dm = - n O  + U l ( n ) (9) 
1 Jo 

In Section 2 we shall discuss the Brownian motion of the boundary point in 
the presence of a given U(n). Our aim is to extend the classical work of 
Kramers  (7) to more general barrier shapes. In Section 3 we go to a statistical 
problem, where the sequence [/zl/~2 "'" ~ ""] is not known in detail, but only 
through certain averages. We take the overall average concentrations of  A 
and B to be equal, and thus ( /~ )  << 0 for all n. On the other hand, we do 
not assume that the different indices/z m and/zp are statistically independent. 
The correlation 

@p/zm) << g(m, p) (10) 

will be different from zero when [ m -  p[ is smaller than a certain "chemical  
correlation range"  ~:c. We shall also assume that g(m, p) depends only on the 
difference (m - p), i.e., that the material properties are homogeneous on the 
average. 

In Section 4 we return to the nonstochastic problem, where the sequence 
[~1 "'"/x~ ...] is assumed to be known entirely; here the boundary point n 
may show a nearly stepwise progression (from one barrier to the next): 
High-resolution experiments might eventually detect these steps. 

a For large n the square deviation (U2(n)) - (U(n)) 2 is linear in n. 
4 It is in this limit only that n can be treated as a continuous variable. 
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This paper attempts to steer a middle course between the Charybdis of  
abstract statistical mechanics and the Scylla of  unproven statements. Section 
2 emphasizes the first aspect, and the reader who is more interested in 
practical denaturation problems should sMp it, using only the final formula 
(45). 

2. B R O W N I A N  M O T I O N  T H R O U G H  A P O T E N T I A L  B A R R I E R  

2.1. Genera l  F e a t u r e s  

We consider a Brownian particle moving in one dimension (axis n) and 
hitting a potential barrier described (in units of  T) by a potential function 
u(,). 

Various types of  barriers are shown in Figs. 2 and 3. The simplest type 
(to be discussed first) is that of  Fig. 2a: This is a purely repulsive barrier, of  
maximum height Urn. Experience and intuition both lead us to guess that the 
probability of overcoming the barrier is proportional  to exp (-Urn). Our 
aim here is (i) to make this guess slightly more quantitative and (ii) to derive 
formulas for the jump rule that can apply to more general barrier shapes, 

(a) 

Um 

n" n "  o g 

Fig. 2. (a) A simple (constantly repulsive) potential barrier. (b) The corresponding 
distribution function f fo r  a Brownian particle starting from the left. It is assumed that 
the particle is trapped as soon as it has reached the right of the barrier. The distribution 
shown is reached when the particle has hit the barriers many times. 
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U 
(a) 

n" 
Urn 

+ 
a3 

n-- ~I 

U, (b) 

n ~ - -  I1' 
Fig. 3. A succession of wells and barriers: (a) simple model, (b) general case. 

such as those depicted in Figs. 2b and 3. Our starting point is the Fokker- 
Planck equation defined in Eqs. (1) and (2) for the distribution function 
f ( n ,  t), which we rewrite, following Kramers, <7~ as 

~ (eVf)] (11) ~ f ( n t )  = - D -~n [e -  V -Zn 

We shall mostly be interested in factored solutions of the form 

f ( n ,  t) = f ( n ) e  - m  (12) 

wheref(n) is governed by the time-independent equation 

!f(n) = - D 2  [e-~--~ ] .~ an [ an (eVf)  = 2/t~ (13) 

The operator ~ is not self-adjoint. However, if self-adjoint operators are 
desired (e.g., to define an orthogonal set of eigenfunctions), it is enough to 
introduce 

r = f ( n )  exp[�89 (14) 
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The equation for r is then 

where 

r = ~ r  (15) 

= a+a (16) 

a = i(a/On) + �89 (17) 

and a + is the Hermitian adjoint of  a. The operator ~ is now self-adjoint, 
and this implies that the eigenvalues I/~- are real. (In practice we shall not 
use J,~ any further.) Equations (13) and (15) have some similarity to a time- 
independent Schr6dinger equation. However, this similarity is not very deep, 
and we shall see that the problem of transmission through barriers is very 
different for the two types of equations; in particular, the WKBJ approxima- 
tion, which gives a powerful approach to the Schr6dinger problem, is less 
fundamental for the Fokker-Planck problem. 

2.2.  T h e  K r a m e r s  Problem(V> 

We now consider the form of  U(n) shown in Fig. 2a, and impose the 
following boundary conditions on the distribution functionf.  

(a) On the right-hand side of the barrier (n = n") we set f = 0. This 
corresponds to a trap, capturing all particles that have gone through the 
barrier. 

(b) At some point (0) on the left of  the barrier (0 < n') we put a reflect- 
ing wall. 

(c) At time 0 we assume that the particle is located between 0 and n'. 
We want to know how long it will take for the particle to jump over the 
barrier and get trapped. The distribution function will then be of the form 

f (n,  t) = ~ e-t/~fk(n)C~ (18) 
k = 0  

where fo , f l , . . . , f~,  .... are the successive eigenfunctions of  (13) and l i fo,  
1/rl,. . . ,  1/rk are the corresponding eigenvalues, with increasing magnitudes. 
The Ck are expansion coefficients to b e  determined from the form o f f ( n ,  
t = 0). For  the problem at hand, the first coefficients Co, (21, C2 .... will be 
nonvanishing, and the long-time behavior of (18) will be of the form 

f (n ,  t) -+ const x fo(n)e-t/~o (19) 

Thus (as usual in linear transport problems for finite geometries) we may say 
that ~'0 is the time required to cross the barrier. From now on we shall con- 
centrate on the ground state: f0 and l/T0 (for simplicity we shall omit the 
index 0 on both symbols). 
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Let us assume now that  the barrier is strong, i.e., that  the time �9 is 
long when compared  to the time that  would be required to reach n" by 
Brownian mot ion  in the absence o f  any barrier. This suggests that  in Eq. 
(13) the left-hand side (proport ional  to I/q) is small. In  a first approximat ion 
we shall put  it equal to zero;  it will turn out  that  this is indeed acceptable if 
the barrier is constantly repulsive and strong (U > 0 and U ~ 1). Equat ion 
(3) can then be integrated twice, giving 

- D e -  ~ (d/dn)(e~f)  = J = const  (20) 

and 

f ,  

f (n )  = (J /D)  )= dm exp[U(m) - U(n)] (21) 

The integration limit in (21) ensures that  f (n")  = 0 as prescribed. We can 
use (21) to calculate f ( n _ ' )  at a point  (n_')  immediately to the left o f  the 
barrier 5 

f ( n _ ' )  = ( J / D  din exp[U(m) - U(n)l = (J/D)ho (22) 
~ n  

For  n < n', U(n) is constant  and J = - D df/dn. Thus we may express (22) 
as an effective boundary  condit ion to be applied at the entrance o f  the 
barrier 

f dm ~-, = h ~  (23) 

The length ho defined in (22) may be called the extrapolation length of  the 
barrier at low frequencies (1/r ~ 0). Its geometrical meaning is shown in 
Fig. 2b. The quanti ty 

f D (24) 
n - -  ' h 0 

could be called the permeation velocity. Finally, if we want to extract the 
lifetime for a particle initially t rapped on the left-hand side, we must  solve 
the free particle equation 

(1/~-)f = - D ~2f/On2 

on the interval 0 < n < n', together with the boundary  condit ion (23) at 
n = n', plus the condit ion Of IOn = 0 at n = 0. The solution is given by 

f = const  • cos(qn) (25) 
q2 = I[D~, hoqtan(qp) = 1 

n ' is infinitesimally close to n' and on the left of n'. This distinction between n_' and 
n' is introduced to cover the case of square barriers, where U and f a re  discontinuous 
at n'. 
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In the limit of large ~-, qp is smaller than one and the last equation gives 

hopq 2 =  1 (26) 

H'h 0 t'l' fn,, 
T = D = D s  d r n e x p [ - U ( n _ ' )  + U(m)] (27) 

Apart from details in presentation, Eq. (27) is the formula derived by 
Kramers. (7~ It is restricted to strong positive barriers such as shown on Fig. 
2a. Note the following consequences of (27): (a) For  a square barrier of 
amplitude V, Eq. (27) gives of course the usual activation energy ~- = const • 
e v. (b) For  a barrier with a simple, well-behaved maximum U = Um the 
integral h0 (22) can be performed by expanding U near Uma~ in a Taylor 
series, and the leading factor in h0 or ~- is again eUm. 

2.3. Barriers w i t h  an At t rac t ive  Part 

Let us now consider the potential diagram of Fig. 3, where a square well 
(of depth W and width a2) precedes a square barrier (of height Um and width 
aa). Both Um and W are taken >> 1. What is the effective activation energy for 
this case ? 

Clearly if a2 is very small the activation energy should be Urn. On the 
other hand, if a2 is large enough, the particle will first go into the well, stay 
there for a long time, and eventually come out to the right: The barrier to 
be overcome in this case is Um + W. This can be confirmed by a complete 
solution, which we shall now describe briefly. Whenever U(n) is discontin- 
uous, the matching conditions to be satisfied are 

f e  v continuous (28) 

J 
= d f  + f d U  continuous (29) 

D dn dn 

as can easily be shown in the original equation (13). The ground-state 
solution of (13) is of the form 

f c o s q  0 < n < al 
f ( n )  = t . acosqn  + f i s i n q n ,  al < n < a~ + al 

(30) 

where c~ and fi are two constants, and q is related to the eigenvalue (1/~-) by 

1/D~- = q2 (31) 

The boundary conditions at al give, after some manipulation, 

= [cos2(qal)]e w + sin~(qal) ~ e TM 

(32) 
fl = (e w - 1) sin(qal) cos(qal) ~ (qal)(e TM - 1) 
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In the last form we used the fact that �9 is large and q is small.) The boundary 
condition at al + a2 can be derived from the analysis of the last paragraph, 
and is 

1 d f ]  1 

I (33) 
f - ~  %+%_= h--~ 

where hi is the extrapolation length for the repulsive part of the barrier, as 
measured from the bot tom of the well 

hi = aa exp(Um + W) (34) 

Inserting (33) into (30) and going to the limit of small q, we arrive at the 
condition 

a[hzq2(al + a2) - -  1] = ~h~q (35) 

When compared with (32) this gives an explicit equation for q2 (or for r), 
namely 

~- = 1/Dq 2 = (hdD)(a2 + a~e -w) (36) 

Equation (36) shows the trends that we guessed earlier: If  a 2 goes to zero, 
r becomes proportional to hie-W: const x er:,,. On the other hand, as 
soon as 

a2e TM > al (37) 

The a~ term may be omitted and r becomes simply proportional to hi = 
const x ezra +w. The criterion (37) amounts to saying that the particle, after 
reaching a local quasistationary state on the left of the barrier, spends more 
time in the well than in the zero-energy portion (0, al). 

Having an explicit form (36) for the lifetime 7, we can now compare it 
to the predictions of Eq. (27); setting n' = a and n" = a~ + a 2 + a3, we 
find from (27) 

r = -~al (a2e w + a3eG 0 ,,~ T 

i.e., the activation energy is expected to be Um in all cases: Thus (27) clearly 
fails in the present case. In the next subsection, we shall show how the disease 
can be cured. 

2.4. Improved  A p p r o x i m a t i o n  

We now consider a rather general potential shape U(n), as shown in 
Fig. 3b, including repulsive and attractive parts. Both parts are assumed to 
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be strong (i.e., l uI > 1 
Eq. (2) in the form 

in most of the region considered). We start from 

D e -  v ( d / d n ) ( e V f )  = _ j  

S = G(m) dm,  G(m)  = dp e mm~- u(v~ (44) 

Equation (43) may also be transformed into an equation for the lifetime r: 

Dr = nh0 + S (45) 

with 

and integrate it to get 

1 fn ~'' f ( n )  = D - e U(m>- v<~>J(m) d m  (38) 

Then we turn to the conservation equation (1) (with Of/~t  = - f / r )  and also 
integrate it, obtaining 

f; J ( m )  = J ( n ' )  + r -1 f ( p )  d e (39) 

This can now be inserted into (38) to give an exact integral equation for f :  

/;m 
D f ( n )  = J(n ' )ho(n)  + r - 1  f m  dp e u(m) - u (n f (p )  (40) 

where ho(n) is a natural generalization of the h0 defined by (22) : 

f]" ho(n) = d m  e u<'n~ - u(~l (41) 

In the second term (40) we shall now insert an approximate value of f (p) .  
We shall assume that in all the region preceding the main barrier the distribu- 
tion function is close to its equilibrium f o r m f  = const x e-r:: 

f ( p )  ~ f ( n _ ' )  exp[U(n_ ') - U(n)] (42) 

This approximation would not be correct to compute derivatives d f / d p ,  but 
is quite satisfactory forf i tse l f  in the limit ofq small [where q is given by (31)]; 
this can be verified explicitly on Eqs. (30) and (32) for the square well plus 
square barrier problem. Inserting (42) into (40) and specializing to the 
barrier entry (n << n_'), we get an explicit formula for the extrapolation 
length h: 

[ , 
h = - ?  . = ho + 
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Equations (44) and (45), together with Eq. (22) defining h0, will be of constant 
use in the next sections. Let us for the moment emphasize some of  their 
general features: 

(a) If  the barrier is repulsive and strong as in Fig. 2a, the correction is 
small: From Eq. (44) one can show that S/ho is comparable to the size of  the 
"non-s t rong"  regions of the barrier (i.e., of  the regions where I U[ < 1, which 
were assumed small); for square barriers the corrections are completely 
negligible. Thus Eq. (27) may be used for the case of Fig. 2a. 

(b) The correction is strong if there is a well to the left of a barrier so 
that both U(m) and - U(p) can be simultaneously large (by putting p in the 
welt and m in the barrier). In particular for the "square well plus square 
barrier" problem of Fig. 3a one has 

f r o -  a~ a~ < m < al + a2 
G(m) = I.a2eU.. +w + m - al - a2, al + a2 < m < a~ + a2 + aa 

Keeping only the dominant term, this gives after integration 

S ~ a3a2eVm +w 

Dr  = a~ho + S = aaeUm(a~ + a2e w) (46) 

in agreement with the correct formula (36). 
(c) Note also that there are no large contributions to S if the well is 

lying to the right of the barrier [because m > p by definition in Eq. (44)], in 
agreement with physical expectations. 

3. S T O C H A S T I C  G R O W T H  OF ONE-COIL  REGION 

3.1. Creep versus Dr i f t  

We consider now the particular helix-coil conformation shown in 
Fig. 1 for a heteropolymer. A single coil region is assumed, extending from 
the beginning (0) of the chemical chain up to n. The associated potential 
energy is (in reduced units) U(n) as defined by Eq. (9). It contains an average 
part, associated with a constant force qs, and a random part 0"1: 

U(n) = - r b n  + U~(n) (47) 

When we are just at the average melting temperature (T = T) the force 4) 
vanishes, and U reduces to U~. The characteristics of U~(n) are shown in 
Fig. 4a. The fluctuations of U~(n) increase in magnitude when n becomes 
large. As a result there exist (in most cases) a number of energy barriers 
between 0 and n. When T < T the average force qb is negative and tends to 
bring back the boundary point n near the origin 0 (Fig. 4b). The most 
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~ _  1,7 
U -~n 

Fig. 4. Typical features of the potential U(n) experienced by the boundary point n, for 
various temperatures. Note that the fluctuations of U increase with n. 

interesting case corresponds to the opposite situation: T > 5r. Here the 
force q~ > 0 pulls the boundary to the right: I f  there were no barriers, the 
boundary point would drift off to infinity at a constant speed �9 D. The 
central question is to find whether the random barriers described by Uz(n) 
will be able to suppress this drift or not. 

The answer, to be derived below, depends on the magnitude of the 
force q). I f  qb is smaller than a certain threshold, we predict that the drift is 
suppressed, and replaced by a slow "creep process," where the abscissa (n) 
is not a linear function of time. 

3.2.  T h e  C r e e p  L a w  

We now treat the chemical sequence/x 1, /~2,..-,/x~,... and the resulting 
potential U~(n) as stochastic functions: This means that we do not consider 
one specific sequence, but rather an ensemble of  polymer chains with different 
sequences. Observations of calculations on an ensemble will necessarily 
cause certain fine structure to be los t - - to  which we shall return in Section 4 - -  
characteristic of  a single chemical chain. But they will give us an average 
creep law around which the fine structure can later be built up. 

Our aim is to estimate the average transit time t(n) between 0 and n, 
through Eq. (45). The stochastic calculation shall mainly be concerned with 
rather large values of  n, for which the potential curve U(n) shows at least a 
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few deep minima and high maxima:  Thus we are in a situation where the 
correction term S is dominant ,  and we can write Eq. (45) in the form 

f:fo t (n) = D - 1 din dp ( e  U(m~- v(p~) (48) 

where the brackets denote an average over our  stochastic ensemble of  
chemical sequences. We must  first separate in U the average part  and the 
fluctuating part :  

U(m) - U(p)  = d~(p - m) + Ul(m) - UI(p) (49) 

For  the large intervals m - p o f  interest (m - p > ~c, where ~:~ is the range 
o f  correlations defined in Section 1) terms such as U~(m) - Uz(p) are the 
sum of  many independent contributions and have a Gaussian distribution. 

Then 

<eV(m~-a(p~) = exp[~b(p -- m)] exp(�89 - UI(p)] 2) (50) 

•  2 dq dr (l~ql~r)] (51) = exp[~(p  -- m) + 2 

When the interval m - p is large the double integral in (51) becomes 

f ;  dq dr g(r  - q)  --~ 2~:c(rn - p) (52) 

where ~:c is now explicitly defined by 

fo dx = (53 )  g(x)  

Collecting these formulas, we find 

f : f o  m t(n) = D -1 dm dp e g~m-p~, n >> ~ (54) 

where 

g = A2~o -- q~ = C ( T *  -- T)  (55) 

Here we have made use of  Eq. (7), and defined 

T* = T + C - I ~ c A  2 (56) 

Returning to Eq. (54), we see that  we are faced with two possibilities, 
depending on the sign of  g:  

(a) I f  g > 0 (T < T*), the exponent is positive, the integral in (54) is 
large, and the time of  transit t(n) is long. In this case the barriers are very 
effective. Also, the assumptions underlying Eq. (45) are satisfied, and the 
whole calculation is consistent. 
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(b) If  g < 0 (T > T*), the exponent is negative, the integral (54) is 
bounded, and the time of  transit becomes short: The barriers are not very 
effective. In this regime we expect that there is a uniform drift. [However, we 
are not able to compute the average drift velocity because Eq. (45) is not a 
correct starting point for short transit times.] 

This distinction between drift and creep regimes for a classical particle 
in a potential whose derivative (the force) is a stationary random variable 
may, in fact, be of interest in other branches of physics. Let us now consider 
in more detail the laws for the creep process occurring in the interval 
T < T < T*. Integrating (54), we get 

f: t (n)  = D - i g  -1 dm (e gm-  1) ,-, D - i g  -~ dm e ~r~ (57) 

"~ D - l g -  2eg~ ' g > 0 

Assuming that all relevant distributions are reasonably peaked, we can 
invert this formula and write that the length ff reached in a fixed time t is of 
order 

= g-~ ln(~ot), r = Dg 2 (58) 

(The dependence of  ~o on T is not very critical, since oJ enters only through a 
logarithm.) The main features of Eq. (58) are then (a) the logarithmic 
dependence of ~ on t, characteristic of a creep process, and (b) the tem- 
perature dependence of the coefficient g-1 [proportional to (T* - T) -1 
according to Eq. (55)]. 

4. C O N C L U D I N G  R E M A R K S  

4.1. Possible Fine S t ruc ture  in the Me l t ing  Curve for  One 
Chemical  Species 

For the stochastic ensemble considered in Section 3, the melting curve is 
expected to be essentially smooth: Any fine structure will be washed out by 
the average over different chemical structures. In this section, we return to 
the case where the chemical sequence is unique. Then we expect the irreversible 
melting curves to show (if the resolution is high enough) a more or less 
stepwise structure. The origin of this structure can be understood in terms 
of successive energy barriers, and is exemplified in Fig. 5. We consider here 
an irreversible melting curve obtained by raising the temperature through 
small successive jumps of  magnitude ~T and duration 0. To the time 0 we 
can associate a characteristic barrier height (in reduced units) V such that 

V = log OJo0 (59) 
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3 

Fig. 5. Irreversible melting. The time scale 0 of the experiments fixes the height V of the 
barriers that can be overcome. When the temperature T reaches T1 the average slope of 
the potential ( - ~ )  becomes small enough and the barrier bl can be overcome. The 
boundary point then exchanges between region 1 and region 2. When T reaches T2 
barrier b2 can be overcome and the boundary point moves to region 3. 

where oJ0 is a microscopic frequency (of  order  D/fc). All barriers smaller 
than V will be overcome in time 0; all larger barriers will not. Consider now 
the chemical sequence described by Fig. 5, and start (at n = 0) with a low 
temperature (T < T). Then at first the boundary  point  will stay in the 
shallow well (1). When  T is increased the average slope o f  U(n) decreases, 
and finally at one temperature T1 the first impor tant  barrier will be overcome;  
the representative point  can reach region 2 and a local thermal equilibrium 
between 1 and 2 is achieved. When  T increases above T1 this equilibrium is 
progressively displaced toward 2. Still increasing the temperature,  we reach 
later a value T = T2 at which the next impor tant  barrier can be overcome. 
The representative point  then moves to region 3, and (for the case shown in 
Fig. 5) region 2 is then completely depopulated. The process continues in a 
similar manner ;  the resulting irreversible melting curve is given as a plot o f  
the average B versus T in Fig. 6. Finally at a temperature close to T* the drift 
regime takes over. 

I f  a curve o f  the type shown in Fig. 6 is observed, it is o f  course tempting 
to define "subunits" along the chemical sequence, corresponding to the 
intervals (01), (12), (23) ..... However,  it must  be realized that  the resulting 
classification depends on the exact type o f  experiment which is performed. 
We discussed here a progressive heating with a fixed time per step 0. I f  we 
had operated differently, we might have found another  set of  subunits:  (a) 
it is clear that  a large increase o f  0 may change V and thus change the 
classification. (b) In  the experiment described in Fig. 7a, a temperature jump  
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Fig. 6. Melting curve n(T) associated with the chemical sequence described by Fig. 5. 
The dashed line shows the smoothed curve calculated by stochastic arguments in 
Section 3. 

has brought T suddently from low values up to T = 5Y, where it is fixed. The 
later variations of  n are recorded as a function of time. In this experiment we 
shall observe successive occupations of  regions 1, 2, 3 ..... However, if on the 
same chemical sequence we perform the first type of  experiment, with pro- 
gressive increases in T (as in Figs. 5 and 6), step 2 will not appear. This is 
clear from Fig. 7b: When 0 is large enough to allow passage of the first 
barrier, the second barrier has been reduced strongly and is not efficient. 

Thus, if certain fine structure appears in an irreversible melting curve, 
it may well depend on the particular choice of  experimental conditions. Only 
when the chemical structure has very sharp accidents will the important 
barriers be the same for all practical types of  experiments. 

With these limitations in mind, we can still, to some extent, ask what 
is the average size ofa subunit. The following represents a means of estimating 
an answer. For simplicity we consider the second type of  experiment (fixed 
T) and fix T = T. Equation (58) (with g = A2sec) tells us roughly the distance 
fi between the origin and the first barrier of  amplitude larger than or equal to 
V = log o~0t. Identifying t and 0 (and ignoring the difference between w0 
and oJ), we get an estimate of  the size of  the first subunit ns 

ns ~-- g - 1 V  = (A2l~c) log(wo0 ) (60) 

Here we have introduced a length A = A -x, which has the following physical 
interpretation : I f  (at T = T) we have a long chain portion made up of only 
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Fig. 7. (a) After a temperature jump from low temperatures to the average melting 
point T, the system will go successively from 1 to 2, and after a longer time from 2 to 3. 
(b) When the same system is heated progressively at the temperature T = T1 where it 
can overcome the first barrier bl, the second barrier b2 has disappeared: The system 
jumps directly from 1 to 3. 

the A monomers  ( those of  high melt ing point) ,  the coil  region will penet ra te  
it, on the average,  only up  to a length A. We might  thus call Z the penetration 
depth. 

Equat ion  (60) is extremely conjectural .  But it points  out  an impor t an t  
fact, which is p robab ly  mode l  independent ,  namely  tha t  the size o f  a subuni t  
need not  be comparab l e  to the range o f  chemical  corre la t ions  sec. 

4.2. The Case of  Natura l  D N A ' S  

Nucleic  acids are copolymers  with two different types of  melt ing units  
(the A T  and G C  pairs).  6 Cer ta in  nucleic acids o f  in termedia te  length, such 
as mi tochondr ia l  yeast  D N A  or  phage  ~ D N A ,  do show a mel t ing curve with 
a certain fine structure,  which is clearly due to the chemical  heterogeneity.  (9,1~ 
However ,  the current  in te rpre ta t ion  (1~ is not connected  with the bar r ie r  

6 For an introduction to the physical aspects of DNA denaturation see, e.g., Ref. 8. 
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processes that were described above. It appears that the various steps found 
upon melting correspond to large segments of the molecule, with different 
AT/GC ratios, melting independently. Thus the two effects are probably 
quite different. It may be, however, that the hysteresis properties, which 
have been used ingeniously to assign the order of the segments, m) are com- 
plicated by some of  the barrier processes that we have described. 

4.3. S u m m a r y  of  Results 

The situation considered in this paper, where one single coil region 
grows from the end of a long helix, is extremely special and may be amenable 
to experiment only on rather small chains, where the stochastic considera- 
tions of Section 3 are not of great interest. However, the formula (45), 
describing the penetration through one barrier, may remain useful even for 
short chains. In a different direction, the distinction between creep and drift 
regions appears general; it may be of help even for problems involving 
simultaneously many coil regions in a partially molten system. 
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